กิจกรรม 19 มกราคม 2554

กิจกรรม 19 ม.ค. 54

 
 ข้อ41

 สืบค้นข้อมูล
 ที่มา : http://www.thaigoodview.com/library/contest2551/science04/109/unt12/un12.htmlปริมาณที่เกี่ยวข้องกับการเคลื่อนที่
ปริมาณที่เกี่ยวข้องกับการเคลื่อนที่จะเป็นพื้นฐานในการศึกษาเรื่องของการ เคลื่อนที่ ซึ่งในการเคลื่อนที่จะต้องประกอบไปด้วยองค์ประกอบ 3 ส่วน
Y วัตถุที่เคลื่อนที่ จะหมายจึงวัตถุที่มีลักษณะเป็นของแข็งที่คงรูปทรงอยู่ได้
Y ผู้สังเกต เป็นผู้ที่ศึกษาวัตถุที่เคลื่อนที่ โดยผู้สังเกตจะต้องอยู่นอกวัตถุที่เคลื่อนที่
Y จุดอ้างอิง การเคลื่อนที่ของวัตถุจะต้องมีการเปลี่ยนตำแหน่งของวัตถุดังนั้นเราจะต้องมี จุดอ้างอิง
เพื่อบอกตำแหน่งของวัตถุเมื่อเวลาผ่านไป

1. ระยะทาง (Distance) การเคลื่อนที่ของวัตถุจะเริ่มนับตั้งแต่จุดเริ่มต้นที่เราสังเกตเป็นจุดอ้าง อิงแล้ววัดระยะทางตามแนวทางที่วัตถุเคลื่อนที่
ไปตามแนวทางการเคลื่อนที่ของวัตถุ
2. การกระจัด (Displacement) เป็นการบอกตำแหน่งของวัตถุหลังจากการที่เคลื่อนที่ไปแล้วในช่วงเวลาหนึ่งโดย จะบอกว่าห่างจากจุดเริ่มต้นเป็นระยะ
เท่าไร และอยู่ทางทิศไหนของจุดเริ่มต้น ดังนั้นการกระจัดเป็น ปริมาณเวกเตอร์ เพราะมีทั้งขนาดและทิศทาง
*********ถ้าวัตถุเคลื่อนที่กลับมาสู่จุดเริ่มต้น การกระจัดจะมีค่าเป็นศูนย์**********
3. เวลา (Time) การวัดเวลาเรานับ ณ จุดเริ่มสังเกต ซึ่งขณะนั้นวัตถุอาจจะหยุดนิ่ง หรือเคลื่อนที่อยู่ก็ตาม ค่าของเวลาจะมีความสัมพันธ์กับระยะทาง เมื่อเวลาผ่านไป ระยะทางที่วัตถุเคลื่อนที่ก็จะเพิ่มขึ้น ในบางครั้งอาจจะมีข้อมูลของระยะทางกับเวลาสัมพันธ์กัน
4. อัตราเร็ว (Speed) หมายถึง ระยะทางที่วัตถุเคลื่อนที่ได้ในหนึ่งหน่วยเวลา เป็นปริมาณสเกลาร์ มีหน่วยเป็น เมตร/วินาที

V แทน อัตราเร็ว มีหน่วยเป็น เมตร/วินาที (m/s)
S แทน ระยะทาง มีหน่วยเป็น เมตร (m)
t แทน เวลา มีหน่วยเป็น วินาที (s )
5. ความเร็ว (Velocity) หมายถึง การกระจัดของวัตถุที่เปลี่ยนไปในหน่วยเวลา

แทน ความเร็ว มีหน่วยเป็น เมตร/วินาที (m/s)
แทน การกระจัด มีหน่วยเป็น เมตร (m)
t แทน เวลา มีหน่วยเป็น วินาที (s )
6. ความเร่ง (Acceleration) ความเร็วที่เปลี่ยนไปในหนึ่งหน่วยเวลา

แทน ความเร่ง มีหน่วยเป็น เมตร/วินาที2 (m/s2 )
แทนความเร็วที่เปลี่ยนไป มีหน่วยเป็น เมตร/ วินาที(m/s)
แทน เวลา มีหน่วยเป็น วินาที (s )
ลักษณะของการเคลื่อนที่
ลักษณะของการเคลื่อนที่แบ่งได้ 4 ลักษณะ คือ

1. การเคลื่อนที่เป็นแนวเส้นตรง
ลักษณะของการเคลื่อนที่แบบนี้เป็นพื้นฐานของการเคลื่อนที่ เพราะทิศทางการเคลื่อนที่จะมีทิศทางเดียว
แต่อาจจะเคลื่อนที่ไป-กลับได้ รูปแบบการเคลื่อนที่อาจจะแตกต่างกันออกไป ตัวอย่างเช่น
- การเคลื่อนที่ของรถไฟบนราง
- การเคลื่อนที่ของรถบนถนนที่เป็นแนวเส้นตรง
- การเคลื่อนที่ภายใต้แรงโน้มถ่วงของโลก
2. การเคลื่อนที่แบบโพรเจกไทล์
เป็นการเคลื่อนที่ของวัตถุที่มีแนวเส้นทางการเคลื่อนที่เป็นรูปโค้งพาราโบลา และเป็นพาราโบลาทางแกน y
ที่มีลักษณะคว่ำการที่วัตถุเคลื่อนที่เป็นแนวเส้นโค้งเนื่องจากวัตถุเคลื่อน ที่เข้าไปในบริเวณที่มีแรงกระทำต่อ
วัตถุไม่อยู่ในแนวเดียวกับทิศของการเคลื่อนที่
3. การเคลื่อนที่แบบวงกลม
เป็นการเคลื่อนที่ของวัตถุรอบจุดๆหนึ่ง โดยมีรัศมีคงที่ การเคลื่อนที่เป็นวงกลม
ทิศทางของการเคลื่อนที่จะเปลี่ยนแปลงตลอดเวลา ความเร็วของวัตถุจะเปลี่ยนไปตลอดเวลา ทิศของแรงที่กระทำจะตั้งฉากกับทิศของการเคลื่อนที่
แรงที่กระทำต่อวัตถุจะมีทิศทางเข้าสู่ศูนย์กลาง เราจึงเรียกว่า “แรงสู่ศูนย์กลาง”
ในขณะเดียวกัน จะมีแรงต้านที่ไม่ให้วัตถุเข้าสู่ศูนย์กลาง เราเรียกว่า “แรงหนีศูนย์กลาง” แรงหนีศูนย์กลางจะเท่ากับแรงสู่ศูนย์กลาง วัตถุจึงจะเคลื่อนที่เป็นวงกลมได้
4. การเคลื่อนที่แบบฮาร์มอนิกอย่างง่าย
ลักษณะของการเคลื่อนที่แบบฮาร์มอนิกอย่างง่าย จะเป็นการเคลื่อนที่ที่มีลักษณะ
พิเศษ คือ วัตถุจะเคลื่อนที่กลับไปกลับมาที่เราเรียกว่า แกว่ง หรือ สั่น การเคลื่อนที่แบบนี้จะเป็นการเคลื่อนที่อยู่ในช่วงสั้นๆ มีขอบเขตจำกัด เราเรียกว่า แอมพลิจูด (Amplitude) โดยนับจากตำแหน่งสมดุล ซึ่งอยู่ตรงจุดกลางวัดไปทางซ้ายหรือขวา เช่น การแกว่งของชิงช้า หรือยานไวกิงในสวนสนุก
รูป การสั่นและแกว่งของวัตถุ
 ตอบ ข้อ 3.

 ข้อ42
 สืบค้นข้อมูล
 ที่มา : http://www.snr.ac.th/elearning/kosit/sec02p01.htmlนขณะที่วัตถุมีการ เคลื่อนที่  ได้ระยะทางและการกระจัดในเวลาเดียวกัน  และต้องใช้เวลาในการเคลื่อนที่  จึงทำให้เกิดปริมาณสัมพันธ์ขึ้น  ปริมาณดังกล่าวคือ
    1. อัตรา เร็ว  คือ ระยะทางที่วัตถุเคลื่อนที่ได้ในหนึ่งหน่วยเวลา จัดเป็นเปริมาณสเกลลาร์ หน่วยในระบบเอสไอ มีหน่วยเป็น เมตร/วินาที
    2. ความเร็ว คือ ขนาดของการกระจัดที่วัตถุเคลื่อนที่ได้ในหนึ่งหน่วยเวลา จัดเป็นปริมาณเวกเตอร์ ใช้หน่วยเดียวกับอัตราเร็ว
    สมการ แสดงความสัมพันธ์ของอัตราเร็ว ระยะทาง และเวลาเป็นดังนี้           ให้         เป็นค่าอัตราเร็วหรือความเร็ว                        เป็นระยะทางหรือการกระจัด                         เป็นเวลาที่ใช้ในการเคลื่อนที่            สมการคือ                           (สมการที่ 1)                  
         อัตรา เร็ว และความเร็ว เป็นปริมาณที่แสดงให้ทราบลักษณะการเคลื่อนที่ของวัตถุ    ถ้าในทุก ๆ  หน่วยเวลาของการเคลื่อนที่วัตถุเคลื่อนที่ด้วยขนาดของอัตราเร็ว หรือ ความเร็วเท่ากันตลอดการเคลื่อนที่ เรียกว่าวัตถุเคลื่อนที่ด้วยอัตราเร็วสม่ำเสมอหรืออัตราเร็วคงที่         ถ้าพิจราณาแล้วพบว่าในแต่ละหน่วยเวลาของการเคลื่อนที่วัตถุเคลื่อน ที่ด้วยอัตราเร็วหรือความเร็วที่แตกต่างกัน กล่าวว่า วัตถุเคลื่อนที่ด้วยอัตราเร่ง หรือ ความเร่ง   ในกรณีนี้การหาค่าอัตราเร็วหรือความเร็ว หาได้สองลักษณะคือ
    1. อัตรา เร็วขณะใดขณะหนึ่ง หรือความเร็วขณะใดขณะหนึ่ง เป็นการหาค่าอัตราเร็วหรือความเร็วในช่วงเวลาสั้น ๆ ช่วงใดช่วงหนึ่งของการเคลื่อนที่ 
    2. อัตรา เร็วเฉลี่ยหรือความเร็วเฉลี่ย เป็นการหาค่าอัตราเร็วหรือความเร็วหลังจากมีการเคลื่อนที่  โดยคำนวณหาจากการเฉลี่ยระยะทางทั้งหมดของการเคลื่อนที่ในหนึ่งหน่วยเวลาของ การเคลื่อนที่ หรือการเฉลี่ยการกระจัดของการเคลื่อนที่ในหนึ่งหน่วยเวลา     
    ข้อ สังเกต   วัตถุที่เคลื่อนที่ด้วยอัตราเร็วสม่ำเสมอ ค่าอัตราเร็วขณะใดขณะหนึ่ง กับค่าอัตราเร็วเฉลี่ยมีค่าเท่ากัน
 ตอบ ข้อ 2.

ข้อ43
 
สืบค้นข้อมูล
ที่มา : http://www.thaigoodview.com/node/18450
โพ รเจกไทล์(projectile) คือวัตถุที่เคลื่อนที่แบบเสรีโดยมี ความเร็วในแนวราบ
การเคลื่อนที่แบบโพรเจกไทล์(projectile motion) เป็น การเคลื่อนที่ของวัตถุ โดยมีแนวการเคลื่อนที่เป็นแนวโค้ง
ตัวอย่าง : การเคลื่อนที่ของลูกธนู กระสุนปืนใหญ่ การเคลื่อนที่ของลูกเทนนิส การเคลื่อนที่ของลูกบอลที่ถูกเตะโด่งลักษณะ ทั่วไปของการเคลื่อนที่แบบโพรเจกไทล์แนวการเคลื่อนที่เป็น วิถีโค้งพาราโบลา
การกระจัด มี 2 แนว เกิด ขึ้นในเวลาเดียวกัน และเป็นอิสระต่อกัน ได้แก่ การกระจัดในแนวราบ และการกระจัดในแนวดิ่ง
ความสัมพันธ์ระหว่างการกระจัดในแนวราบและการกระจัดในแนว ดิ่ง เป็นดังนี้
            2.1 การกระจัดในแนวราบ เกิดจากการเคลื่อนที่ภายใต้ความเร็วคงที่ ดังนั้นเมื่อคิดในช่วงเวลาที่เท่าๆกัน จะ มีการกระจัดเท่ากันเสมอ
            2.2
การกระจัดในแนวดิ่ง เกิดจากการเคลื่อนที่ภายใต้ความเร่งคงที่ ดังนั้นเมื่อคิดในช่วงเวลาที่เท่าๆกัน จะ มีการกระจัดเปลี่ยนไปเสมอความเร็ว มี 2 แนว เกิดขึ้นในเวลาเดียวกัน และเป็นอิสระต่อกัน ได้แก่ ความเร็วในแนวราบซึ่งมีค่าคงที่  และ ความเร็วในแนวดิ่งซึ่งมีค่าเปลี่ยนแปลง
ความเร่ง โพ รเจกไทล์ขณะอยู่กลางอากาศ (ไม่ คิดแรงต้านของอากาศ) แรงลัพธ์ที่กระทำต่อวัตถุก็คือน้ำหนักของวัตถุเอง ดังนั้น จากกฎการเคลื่อนที่ข้อ 2 ของ นิวตัน
นั่นคือ โพรเจกไทล์จะมีความเร่งคงที่ในแนวดิ่ง เนื่องจากแรงโน้มถ่วงของโลก เหมือน กับวัตถุที่ตกแบบเสรี ณ จุดสูงสุด ความเร็ว = 0
โปรเจกไทล์จะมีความเร็วเท่ากับความเร็วต้นในแนวแกน x เมื่อพิจารณาเวลาในการ เคลื่อนที่แบบโพรเจกไทล์ จะพบว่าเวลาของการเคลื่อนที่ในแนวราบและแนวดิ่งเท่า กัน
เวลาที่ใช้ในการเคลื่อนที่ จาก จุดเริ่มต้นถึงจุดสูงสุดของแนวการเคลื่อนที่ เท่ากับเวลาที่ใช้ในการเคลื่อนที่จากจุดสูงสุด ถึงตำแหน่งระดับเดียวกับการเคลื่อนที่
      เมื่อพิจารณาการเคลื่อนที่แบบโพรเจกไทล์ อาจจำแนกโพรเจกไทล์เป็น 3 แบบ คือ1. โพรเจกไทล์ที่มีความเร็วเริ่มต้นในแนวราบ (ไม่ เป็นศูนย์) และความเร็วต้นในแนวดิ่งเป็นศูนย์ เช่น ก้อนหินที่ถูกปาไปในแนวขนานกับพื้น ลูกปิงปองที่กลิ้งตกจากโต๊ะ 2. โพรเจกไทล์ที่มีความเร็วต้นในแนวราบและความเร็วต้นในแนวดิ่งไม่เป็นศูนย์ โดยมีความเร็วต้นทำมุมกับแนวราบในทิศขึ้นหรือ ทิศลงก็ได้ เช่น ลูกขนไก่ที่ถูกตีขึ้นไป ในอากาศ หรือลูกเหล็กที่ถูกปาลงจากบันไดชั้นบน 3. โพรเจกไทล์ที่มีความเร็วต้นในแนวราบและความเร็วต้นในแนวดิ่งไม่เป็นศูนย์ เหมือนแบบที่ 2 แต่ตำแหน่งเริ่มต้นและตำแหน่ง สุดท้ายอยู่ในระดับเดียวกัน เช่น ลูก บอลที่ถูกเตะขึ้นจากพื้นจะเคลื่อนที่ไปตกลงที่พื้นซึ่งอยู่ในระดับเดียวกัน
 
ในแนวดิ่ง (แกน y ) 
ระยะที่ขึ้นได้สูงสุด
ในแนวราบ (แกน x)
                                                 S = ut
 
        ระยะที่เคลื่อนที่ได้ตามแนวแกน x       
 
เวลาทั้ง หมดในการเคลื่อนที่
ความเร็วของวัตถุที่ตำแหน่งใด ๆ

ตอบ ข้อ 4.

ข้อ44
สืบค้นข้อมูล
ที่มา : http://web.ku.ac.th/schoolnet/snet3/supinya/harmonic-mot/harmonic.htm
การเคลื่อนที่แบบฮา ร์โมนิกอย่างง่าย
คือการที่วัตถุเคลื่อนที่กลับไปมาซ้ำรอย เดิม มักจะใช้สัญญลักษณ์ว่า SHM. ตัวอย่างของการเคลื่อนที่แบบนี้ได้แก่ การเคลื่อนที่ของวัตถุที่ถูกผูกติดไว้ กับสปริงในแนวราบ แล้ววัตถุเคลื่อนที่ไปมาตามแรงที่สปริงกระทำต่อวัตถุ ซึ่งเขาจะศึกษาการเคลื่อนที่นี้จากรูปที่ 1
ในรูปที่ 1a ตำแหน่ง x = 0 เป็นตำแหน่งสมดุลของปริ ง หรือ เป็นตำแหน่งที่สปริงมีความยาวตามปกติ ณ ตำแหน่งนี้สปริงจะไม่ส่งแรงมากระทำต่อวัตถุ ในรูปที่ 1a นี้มีวัตถุมวล m ผูกติดกับ สปริง วางอยู่บนพื้นที่ซึ่งไม่มีแรงเสียดทาน ที่ตำแหน่งซึ่งปริงยืดออกจากความยาวปกติเป็นระยะทาง A สปริงจะออกแรงดึงวัตถุมวล m กลับมาอยู่ในตำแหน่งสมดุล x = 0 เรียกแรงที่สปริงกระทำต่อวัตถุนี้ว่าแรงดึงกลับ (Restoring force) ถ้า F เป็นแรงดึงกลับนี้จะได้ว่า
F = -kx -----(1)
แรงดึงกลับมีเครื่องหมายลบ เพราะทิศทาง ของเวกเตอร์ของแรงกับเวกเตอร์ของการขจัด x มักจะตรงข้ามกันเสมอ ค่า k คือค่านิจของสปริง (spring constant) ในรูปที่ 1 นี้ได้กำหนดให้ทิศทางขวาเป็นบวก ดังนั้นในรูป 1a ตำแหน่ง x = A จึงเป็นบวก ในขณะที่ทิศทาง ของแรงดึงกลับเป็นลบ และเนื่องจากวัตถุเริ่มเคลื่อนที่ที่ x = A ความเร็วของวัตถุจึงเป็นศูนย์
เมื่อปล่อยให้วัตถุเคลื่อนที่ตามแรงของสปริง วัตถุจะเคลื่อนที่มาทางซ้าย และในรูปที่ 1b วัตถุผ่านตำแหน่ง x = 0 หรือตำแหน่งสมดุลซึ่งตำแหน่งนี้ แรงที่สปริงกระทำต่อวัตถุจะเป็นศูนย์ แต่อัตราเร็วของวัตถุจะมากที่สุด โดยทิศของความเร็วจะเป็นจากขวาไปซ้าย หรือความเร็วเป็นลบ เนื่องจากพื้นไม่มีแรงเสียดทาน และสปริงก็ไม่ออกแรงมากกระทำต่อวัตถุ ดังนั้นที่ตำแหน่ง x = 0 นี้ วัตถุจึงสามารถรักษาสภาพการเคลื่อนที่ตามกฎข้อที่ 1 ของนิวตันไว้ได้ วัตถุจึงยังคงสามารถเคลื่อนที่ต่อไปทาง ซ้ายได้
ในขณะที่วัตถุเคลื่อนที่ไปทาง ซ้ายนั้น วัตถุก็จะผลักให้สปริงหดสั้นไปจากความยาว เดิมด้วย ดังนั้นสปริงจะพยายามออกแรงดึงกลับไปกระทำต่อวัตถุ เพื่อให้ตัวเองกลับไปสู่ความยาวปกติอีก จนในรูปที่ 1 C แสดงถึงขณะที่วัตถุเคลื่อนที่ไปทาง ซ้ายมากที่สุด ความเร็วของวัตถุจะเป็นศูนย์ทิศของแรงดึงกลับจากซ้ายไปขวา หรือเป็นบวก เวกเตอร์ของการขจัดของวัตถุมีทิศจากขวาไปซ้าย และมีขนาดเป็น A ดังนั้นตำแหน่งของวัตถุขณะนี้จึงเป็น x = -A มีข้อน่าสังเกตว่า ขนาดของการขจัดมากที่สุดของวัตถุไม่ว่าจะเป็นทาง ซ้ายหรือขวาจะเท่ากัน คือเป็น a เนื่องจากในรูป 1c นี้มีแรงมากระทำต่อวัตถุเพียงแรงเดียว คือแรงจากสปริง ซึ่งมีทิศไปทางขวา วัตถุจึงเคลื่อนที่กลับไปทางขวาด้วยอิทธิพลของแรงนี้

ตอบ ข้อ 3.

ข้อ45
 
สืบค้นข้อมูล
ที่มา : http://www.rmutphysics.com/charud/virtualexperiment/virtual1/ericksontutor/tutor/2210/mechanical_oscillations/indexthai.htm
คาบของลูกตุ้ม
เรื่องมีอยู่ว่าในขณะที่ Foucault กำลังประยุกต์นำลูกตุ้มมาใช้จับเวลาในการศีกษาดาราศาสตร์ เขาได้เกิดความคิดที่จะประยุกต์การแกว่งของลูกตุ้มเพื่อพิสูจน์การหมุนรอบ ตัวเองของโลก โดยใช้กฎของนิวตันที่ว่าระนาบการแกว่งของลูกตุ้มนั้นจะคงที่เสมอ ดังนั้นถ้าเราวางลูกต้มให้แกว่งอยู่ที่ขั้วโลก เนื่องจากว่าโลกหมุนรอบตัวเอง คนบนพื้นโลกก็จะเห็นระนาบการแกว่งของลูกตุ้มเปลี่ยนตำแหน่งไปเรื่อยๆ และจะกลับมายังตำแหน่งเดิมทุกๆ 24 ชั่วโมง
    ทั้งที่ความจริงแล้วระนาบการแกว่งของลูกตุ้มนั้นไม่ได้เปลี่ยนแปลง แต่เนื่องจากว่าโลกนั้นหมุนรอบตัวเอง จึงทำให้ผู้สังเกตุซึ่งอยู่บนโลกเห็นไปเช่นนั้น ( คล้ายๆกับเราเห็นดวงอาทิตย์หมุนรอบโลก ) อัตราการเปลี่ยนแปลงระนาบของการแกว่งของลูกต้มที่ตำแหน่งต่างๆ ของโลกนั้นไม่เท่ากัน นั้นขึ้นอยู่กับค่าละติจูด (latitude)
   โดยสามารถคำนวณได้จากสูตร  :           
T = 24/sin (theta) 
    เมื่อ T  คือคาบเวลาที่ระนาบการแกว่ง จะวนมายังตำแหน่งเดิม หน่วยเป็นชั่วโมง และ theta  คือค่าละติจูดของตำแหน่งที่อยู่ จะเห็นว่าที่ขั้วโลกเหนือนั้น ระนาบการแกว่งจะเปลี่ยนแปลง และวนกลับมายังตำแหน่งเดิมในเวลา 24 ชั่วโมง (ขั้วโลกมี ละติจูดเท่ากับ 90 องศาเหนือ  และ sin 90 เท่ากับ 1) ในขณะที่บริเวณใกล้เส้นศูนย์สูตรนั้น ระนาบการแกว่งจะไม่เปลี่ยนเลย (เช่นถ้าทำการทดลอง ในประเทศไทยก็แทบจะไม่เห็นการเปลี่ยนแปลงเลย

ตอบ ข้อ 2.

ข้อ46
สืบค้นข้อมูล
ที่มา : http://phchitchai.wordpress.com/2010/07/29/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%97%E0%B8%94%E0%B8%A5%E0%B8%AD%E0%B8%87-2-1-%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%A7%E0%B8%B1%E0%B8%94%E0%B8%AD%E0%B8%B1%E0%B8%95%E0%B8%A3%E0%B8%B2%E0%B9%80%E0%B8%A3/
การทำงานของเครื่องเคาะสัญญาณเวลา
1. ต่อไฟฟ้า 12 โวลต์ AC จากหม้อแปลงโวลต์ต่ำเข้ากับเครื่องเคาะสัญญาณเวลา
     ดังรูป
2. สอดแถบกระดาษผ่านช่องใต้คันเคาะของเครื่องเคาะสัญญาณเวลาโดยให้อยู่ใต้
     แผ่นกระดาษคาร์บอน
3. เปิดสวิตซ์ให้เครื่องเคาะสัญญาณเวลาทำงาน แล้วใช้มือดึงแถบกระดาษตรงๆ
เครื่องเคาะสัญญาณเวลาจะเคาะด้วยความถี่ 50 ครั้งต่อวินาที หมายความว่า ใน 1 วินาที
เครื่องเคาะ จะเคาะ 50 ครั้ง นั่นคือ เวลาที่ใน 1 ช่วงจุดจะใช้เวลา 1/50 วินาที
การหาอัตราเร็ว ความเร่ง จากเครื่องเคาะสัญญาณเวลา
1. การหาอัตราเร็วจากเครื่องเคาะสัญญาณเวลา
1.1. การหาอัตราเร็วที่จุด A กระทำได้ดังนี้
… 1.1.1. หาระยะทาง s โดยวัดจาก A ไปทางซ้าย 1 ช่วงจุด ไปทางขวา 1 ช่วงจุด
( แต่ถ้าระยะทางสั้นเกินไป ใช้วัดไปทางซ้าย 2 ช่วงจุดไปทางขวา 2 ช่วงจุด )

1.1.3 หาอัตราเร็วใช้สูตร
ตำแหน่ง อัตราเร็วต้องอยู่กึ่งกลางของช่วงที่หาอัตราเร็ว
ข้อสังเกต ถ้า s หน่วยเป็น cm , อัตราเร็ว v หน่วยเป็น cm/s
1.2. การหาอัตราเร็วเฉลี่ยจากเครื่องเคาะสัญญาณเวลา
เช่น หาอัตราเร็วเฉลี่ยระหว่าง XY ต้อง วัดระยะระหว่าง XY และใช้เวลาระหว่าง XY
แทนค่าในสูตร

แทนค่าในสูตร

ตอบ ข้อ 4.

ข้อ47

สืบค้นข้อมูล
ที่มา : http://www.thaigoodview.com/node/19708
การเคลื่อนที่แบบโพรเจกไทล์         คือการ เคลื่อนที่ในแนวโค้งพาราโบลา ซึ่งเกิดจากวัตถุได้รับความเร็วใน 2 แนวพร้อมกัน คือ ความเร็วในแนวราบและความเร็วในแนวดิ่ง ตัวอย่างของการเคลื่อนที่แบบโพรเจกไทล์  ได้แก่ ดอกไม้ไฟ น้ำพุ การเคลื่อนที่ของลูกบอลที่ถูกเตะขึ้นจากพื้น การเคลื่อนที่ของนักกระโดดไกล  
กาลิเลโอ ป็นคนแรกที่ อธิบายการเคลื่อนที่แบบโพรเจกไทล์ได้อย่างละเอียด เขาได้อธิบายว่าถ้าจะศึกษาการเคลื่อนที่ของวัตถุแบบโพรเจกไทด์ได้อย่าง ละเอียดนั้น ต้องแยกศึกษาส่วนประกอบในแนวราบ และ ในแนวดิ่งอย่างอิสระไม่เกี่ยวข้องกัน
นสมัยกรีกโบราณเชื่อตามทฤษฎีของอริสโต เติลที่ว่าถ้ายิงวัตถุจากปืนใหญ่ (ดังรูป) วัตถุจะเคลื่อนที่เป็นเส้นตรงตามแนวที่ยิง และวัตถุจะเคลื่อนที่ด้วยความเร็วที่ให้จนกระทั่งความเร็วนั้นค่อย ๆ ลดลง จนเป็นศูนย์ แล้ววัตถุจะตกลงมาอย่างรวดเร็วที่ตำแหน่งนั้น
 
ต่อมาจากการสังเกตอย่างละเอียดของ Niccolo Tartaglia พบว่าอันที่จริงแล้วการเคลื่อนที่แบบโพรเจกไทล์นั้น แนวการเคลื่อนที่เป็นรูปโค้ง ในขณะนั้นไม่มีใครสามารถอธิบายได้ว่าเป็นเพราะอะไร ต่อมากาลิเลโอได้ อธิบายว่า การเคลื่อนที่แบบโพรเจกไทล์ เป็นการเคลื่อนที่ที่ประกอบด้วยการเคลื่อนที่ในสองแนวไม่ใช่แนวเดียว โดยในแนวดิ่งจะมีแรงเนื่องจากแรงดึงดูดของโลกกระทำต่อวัตถุให้เคลื่อนที่ลง ด้วยความเร่ง     และในเวลาเดียวกับที่วัตถุถูกดึงลง โพรเจกไทล์ก้ยังคงเคลื่อนที่ตรงในแนวราบด้วย ( หลักความเฉื่อย ของกาลิเลโอ Galilao's pricipal Inertia )เขาแสดงให้เห็นว่า โพรเจกไทล์นั้นได้ จะประกอบด้วยการเคลื่อนที่ 2 แนว พร้อม ๆกัน โดยในแต่ละแนวนั้นจะเคลื่อนที่อย่างอิสระไม่เกี่ยวข้องกัน    และยังพบว่าเส้นทางการเคลื่อนที่ของโพรเจกไทล์จะเป็นรูปเรขาคณิต ที่เรียกว่า "พาราโบลา"
 พิจารณาในแนวดิ่ง  

   ในกรณีที่เราไม่คิด แรงต้านทานของอากาศ  วัตถุทุกชนิดที่อยู่บนโลกนี้ถ้าปล่อยจากที่สูงระดับเดียวกัน  วัตถุจะตกถึงพื้นในเวลาเท่ากัน   โดยไม่ขึ้นอยู่กับขนาด หรือน้ำหนักของวัตถุ (ดังรูป)
พิจารณาในแนวดิ่ง และในแนวการเคลื่อนที่แบบโพรเจกไทล์

   พิจารณาวัตถุ 2 ก้อนที่ตกจากที่ระดับเดียวกัน โดยก้อนแรกปล่อยให้เคลื่อนที่ลงในแนวดิ่งอิสระ ก้อนที่ สอง เคลื่อนที่แบบโพรเจกไทล์ จะเห็นว่าวัตถุทั้งสองจะตกถึงพื้นดินพร้อมกัน
(ดังรูป)
พิจารณาการเคลื่อนใน แนวดิ่ง แนวราบ และในแนวโพรเจกไทล์   
 พิจารณาการเคลื่อนที่ ของวัตถุที่ มีการเคลื่อนที่ 3 แนวพร้อมกัน คือ การเคลื่อนที่ในแนวดิ่งอิสระ  การเคลื่อนที่แบบโพรเจกไทล์  และการเคลื่อนที่ในแนวราบ   จะเห็นว่าวัตถุจะตกถึงพื้นพร้อมกัน  นั่นคือเวลาที่ ใช้จะเท่ากันทุกแนว (ดังรูป)

ตอบ ข้อ 3.

ข้อ48
สืบค้นข้อมูล
ที่มา : http://www.snr.ac.th/elearning/kosit/sec02p02.html
กรณีที่วัตถุเคลื่อน ที่อัตราเร็วที่ไม่สม่ำเสมอ หรือความเร็วไม่สม่ำเสมอ วัตถุมีค่าความเร่ง    
ความหมาย ของอัตราเร่งหรือความเร่ง คือ อัตราเร็วหรือ ความเร็วที่เปลี่ยนไปในหนึ่งหน่วยเวลาที่วัตถุมีการเคลื่อน ที่
               การ คำนวณหาค่าอัตราเร่ง ทำได้โดยหาอัตราเร็วที่เปลี่ยนไปโดยใช้อัตราเร็วสุดท้ายของการเคลื่อนที่ลบ ด้วยอัตราเร็วเริ่มต้นของการเคลื่อนที่ หารด้วยเวลาที่ใช้เปลี่ยนค่าอัตราเร็วนั้น เช่น
               กำหนด ให้        เป็นอัตราเร็วเริ่มต้นของการเคลื่อนที่
                                       เป็นอัตราเร็วสุดท้ายของการเคลื่อนที่
                                      เป็นเวลาขณะที่เริ่มต้นการเคลื่อนที่
                                      เป็นเวลาในช่วงสุดท้ายของการเคลื่อนที
                                       เป็นค่าอัตราเร่งของการเคลื่อนที่
                สมการแสดงความสัมพันธ์ คือ
                         หรือ                                  ถ้า  คือ ช่วงเวลาที่มีการเปลี่ยนค่าอัตราเร็ว   (สมการที่ 2)
               สำหรับสูตรในการคำนวณหาค่าความเร่ง  ใช้สูตรเดียวกัน เพียงแต่ค่าความเร็วที่เปลี่ยนไปเป็นปริมาณสเกลลาร์

ตอบ ข้อ 1.

ข้อ49
 สืบค้นข้อมูล
 ที่มา : http://www.dekying.com/women405.htm
อัตราเร็ว (สัญลักษณ์: v) คืออัตราของ การเคลื่อนที่ หรือ อัตราการเปลี่ยนแปลงของตำแหน่งก็ได้ หลายครั้งมักเขียนในรูป ระยะทาง d ที่เคลื่อนที่ไปต่อ หน่วย ของ เวลา t
อัตราเร็ว เป็นปริมาณสเกลาร์ที่มีมิติเป็นระยะทาง/เวลา ปริมาณเวกเตอร์ที่เทียบเท่ากับอัตราเร็วคือความเร็ว อัตราเร็ววัดในหน่วยเชิงกายภาพเดียวกับความเร็ว แต่อัตราเร็วไม่มีองค์ประกอบของทิศทางแบบที่ความเร็วมี อัตราเร็วจึงเป็นองค์ประกอบส่วนที่เป็นขนาดของ ความเร็ว
ในรูปสัญลักษณ์ทางคณิตศาสตร์ อัตราเร็วคือ
หน่วยของอัตราเร็ว ได้แก่
  • เมตรต่อวินาที, (สัญลักษณ์ m/s) , ระบบหน่วย SI
  • กิโลเมตรต่อชั่วโมง, (สัญลักษณ์ km/h)
  • ไมล์ต่อชั่วโมง, (สัญลักษณ์ mph)
  • นอต (ไมล์ทะเลต่อ ชั่วโมง, สัญลักษณ์ kt)
  • มัค เมื่อมัค 1 เท่ากับ อัตราเร็วเสียง มัค n เท่ากับ n เท่าของอัตราเร็วเสียง
มัค 1 ≈ 343 m/s ≈ 1235 km/h ≈ 768 mi/h (ดู อัตราเร็วเสียง สำหรับข้อมูลเพิ่มเติม)
  • อัตราเร็วแสง ใน สุญญากาศ (สัญลักษณ์ c) เป็นหนึ่งใน หน่วยธรรมชาติ
c = 299,792,458 m/s
  • การเปลี่ยนหน่วยที่สำคัญ
1 m/s = 3.6 km/h
1 mph = 1.609 km/h
1 knot = 1.852 km/h = 0.514 m/s
ยานพาหนะต่าง ๆ มักมี speedometer สำหรับวัดอัตราเร็ว
วัตถุที่เคลื่อนที่ไปตามแนวราบ พร้อม ๆ กับแนวดิ่ง (เช่น อากาศยาน) จะแยกประเภทเป็น forward speedclimbing speed กับ
อัตรา เร็วเฉลี่ย
อัตราเร็วในรูป สมบัติ เชิงกายภาพ มักแทนอัตราเร็วที่ขณะใดขณะหนึ่ง ในชีวิตจริงเรามันใช้ อัตราเร็วเฉลี่ย (ใช้สัญลักษณ์ ) ซึ่งก็คือ อัตรา ของ ระยะทาง รวม (หรือ ความยาว) ต่อช่วง เวลา
ยกตัวอย่างเช่น ถ้าคุณเคลื่อนที่ได้ 60 ไมล์ในเวลา 2 ชั่วโมง อัตราเร็ว เฉลี่ย ของคุณในช่วงเวลานั้นคือ 60/2 = 30 ไมล์ต่อชั่วโมง แต่อัตราเร็วที่ขณะใดขณหนึ่งย่อมเปลี่ยนแปลงต่างกันไป
ในรูปสัญลักษณ์ทางคณิตศาสตร์
อัตราเร็วที่ขณะใดขณะหนึ่งซึ่งนิยามเป็นฟังก์ชันของ เวลา ในช่วงเวลา [t0,t1] จะให้อัตราเร็วเฉลี่ยในรูป
ในขณะที่อัตราเร็วที่ขณะใดขณะหนึ่งซึ่งนิยามเป็นฟังก์ชันของ ระยะทาง (หรือ ความยาว) ในช่วงความยาว [l0,l1] จะให้อัตราเร็วเฉลี่ยในรูป
บ่อยครั้งที่มีคนคาดโดยสัญชาตญาณ แต่ผิด ว่าการเคลื่อนที่ครึ่งแรกของระยะทางด้วยอัตราเร็ว va และระยะทางครึ่งที่สองด้วยอัตราเร็ว vb จะให้อัตราเร็วเฉลี่ยรวมเป็น ค่าที่ถูกต้องต้องเป็น
(ระลึกไว้ว่า อย่างแรกเป็น
ค่า เฉลี่ยเลขคณิต ในขณะที่อย่างที่สองเป็น ค่าเฉลี่ยฮาร์มอนิก)
อัตราเร็วเฉลี่ยสามารถหาได้จาก distribution function ของอัตราเร็วได้เช่นกัน (ทั้งในรูประยะทางหรือเวลาก็ตาม)

 ตอบ ข้อ 3.

ข้อ50
 
สืบค้นข้อมูล
ที่มา : http://www.rmutphysics.com/charud/naturemystery/sci2/internet/internetthai10.htm
อนุภาคของประจุไฟฟ้า
                 ความเชื่อนี้ยิ่ง ฝังรากลึกลงไปอีก  เมื่อนำกฎการเคลื่อนที่ไปอธิบายมวลขนาดเล็กและมีประจุไฟฟ้า   พวกเขาเริ่มต้นศึกษาธรรมชาติของจุดประจุ เหมือนกับการศึกษาอนุภาคเดี่ยว  และตั้งกฎของสนามไฟฟ้า  เลียนแบบสนามแรงโน้มถ่วง   การไหลของประจุไฟฟ้าหลายๆประจุ  ไปเปรียบเทียบกับการไหลของของไหล  ซึ่งก็เหมือนกับการไหลของน้ำ    จึงเรียกการไหลของประจุไฟฟ้าว่า  กระแสไฟฟ้า             มีการประดิษฐ์อุปกรณ์ที่ควบคุมการไหลของกระแสไฟฟ้าที่เทียบได้กับวาวล์น้ำ  นั่นก็คือ  ไดโอด    และเทียบได้กับปั๊ม น้ำ ก็คือ  ทรานซิสเตอร์      เป็นต้น    เทคโนโลยีที่เกิดขึ้นจาก การเรียนรู้  เพื่อควบคุมการไหลของกระแสไฟฟ้ามีมาก มายนับไม่ถ้วน    มีการส่งข้อมูลผ่านทางสายไฟ  คือ  โทรเลข และโทรศัพท์     ความก้าวหน้านี้พัฒนาขึ้นอย่างรวดเร็ว  ไม่แพ้ความก้าวหน้าทางด้านอวกาศที่กำลังนำมนุษย์ไปเหยียบ ดวงจันทร์  ซึ่งจริงๆแล้ว  ทั้งสองเรื่องนี้  มาจากความรู้ทางกลศาสตร์ทั้งสิ้น
 
เรื่องเดียวกัน แต่ตัวกลางคนละแบบบนเป็นประจุไฟฟ้าส่วนล่างตัวกลางเป็นแก๊ส

ตอบ ข้อ 4.

1 ความคิดเห็น:

  1. งานครบถ้วนสมบูรณ์ไม่ค่อยสวยเท่าไร
    ผมให้คะแนน 96 คะแนน

    ตอบลบ